用极限的方法求导数
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
f(x)=1/x²
那么导数为f'(x)
=lim (dx趋于0) [f(x+dx) -f(x)]/dx
=lim (dx趋于0) [1/(x+dx)² -1/x²]/dx
=lim (dx趋于0) [-(2xdx+dx²)/(x+dx)²x²] /dx
=lim (dx趋于0) -(2x+dx)/(x+dx)²x²
代入dx=0,得到f'(x)= -2/x^3
那么导数为f'(x)
=lim (dx趋于0) [f(x+dx) -f(x)]/dx
=lim (dx趋于0) [1/(x+dx)² -1/x²]/dx
=lim (dx趋于0) [-(2xdx+dx²)/(x+dx)²x²] /dx
=lim (dx趋于0) -(2x+dx)/(x+dx)²x²
代入dx=0,得到f'(x)= -2/x^3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询