已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E. (1)求
已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线...
已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值. 展开
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值. 展开
2个回答
展开全部
解答:
(1)利用双曲线的定义,
轨迹E是双曲线一支,离F1远的那支,即右支,
∴ 方程x²-y²/3=1 (x>0)
(2)取特殊值,直线与x轴垂直
可以得到M(5,0)或M(-1,0)
下面证明即可
设直线 y=k(x-2)
与双曲线方程3x²-y²=3联立
(k²-3)x²-4k²x+4k²+3=0
∴ x1+x2=4k²/(k²-3)
x1*x2=(4k²+3)/(k²-3)
① M(-1,0)
MP.MQ
=(x1+1)(x2+1)+y1y2
= (x1+1)(x2+1)+k²(x1-2)(x2-2)
=(k²+1)x1x2+(1-2k²)(x1+x2)+4k²+1
将x1+x2,x1*x2 代入
即得MP.MQ=0
∴ M(-1,0)满足题意
②同理,M(5,0)也满足题意
(1)利用双曲线的定义,
轨迹E是双曲线一支,离F1远的那支,即右支,
∴ 方程x²-y²/3=1 (x>0)
(2)取特殊值,直线与x轴垂直
可以得到M(5,0)或M(-1,0)
下面证明即可
设直线 y=k(x-2)
与双曲线方程3x²-y²=3联立
(k²-3)x²-4k²x+4k²+3=0
∴ x1+x2=4k²/(k²-3)
x1*x2=(4k²+3)/(k²-3)
① M(-1,0)
MP.MQ
=(x1+1)(x2+1)+y1y2
= (x1+1)(x2+1)+k²(x1-2)(x2-2)
=(k²+1)x1x2+(1-2k²)(x1+x2)+4k²+1
将x1+x2,x1*x2 代入
即得MP.MQ=0
∴ M(-1,0)满足题意
②同理,M(5,0)也满足题意
展开全部
|PF1|-|PF2|=2<|F1F2||知,点P的轨迹是以F1F2为焦点的双曲线右支
得c=2,2a=2,
a=1
b^2=3
动点P的轨迹方程是:x^2-y^2/3=1(x≥1)
当直线l的斜率存在时,设直线方程为y=k(x-2),P(x1,y1),Q(x2,y2)
与双曲线方程联立消y得(k^2-3)x^2-4k^2x+4k^2+3=0,
解得k^2>3
MP⊥MQ,
得3(1-m^2)+k^2(m^2-4m-5)=0对任意的k^2>3恒成立
1-m^2=0,m^2-4m-5=0
解得m=-1
当m=-1时,MP⊥MQ.
当直线l的斜率不存在时,由P(2,3),Q(2,-3)及M(-1,0)成立,
当m=-1时,MP⊥MQ.
得c=2,2a=2,
a=1
b^2=3
动点P的轨迹方程是:x^2-y^2/3=1(x≥1)
当直线l的斜率存在时,设直线方程为y=k(x-2),P(x1,y1),Q(x2,y2)
与双曲线方程联立消y得(k^2-3)x^2-4k^2x+4k^2+3=0,
解得k^2>3
MP⊥MQ,
得3(1-m^2)+k^2(m^2-4m-5)=0对任意的k^2>3恒成立
1-m^2=0,m^2-4m-5=0
解得m=-1
当m=-1时,MP⊥MQ.
当直线l的斜率不存在时,由P(2,3),Q(2,-3)及M(-1,0)成立,
当m=-1时,MP⊥MQ.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询