已知集合A={x|x²+x-2≤0},B={x|2<x+1≤4},设集合C={x|x²+bx+c>0},

且满足(A∪B)∩C=∅,(A∪B)∪C=R,求b,c的值。... 且满足(A∪B)∩C=∅,(A∪B)∪C=R,求b,c的值。 展开
初夏sceret
2013-02-13 · TA获得超过254个赞
知道答主
回答量:40
采纳率:0%
帮助的人:38万
展开全部
分析:由题意求出A∪B,利用(A∪B)∩C=∅,(A∪B)∪C=R,推出C={x|x>3或x<-2},然后解出实数b,c的值.解答:解:因为A={x|-2≤x≤1},B={x|1<x≤3},
所以A∪B={x|-2≤x≤3},
又因为(A∪B)∩C=∅,(A∪B)∪C=R,
所以C={x|x>3或x<-2},
则不等式x2+bx+c>0的解集为{x|x>3或x<-2},
即方程x2+bx+c=0的两根分别为-2和3,
则b=-(3-2)=-1,c=3×(-2)=-6.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式