如图,△ABC中,AB=AC,D是CB延长线上一点,∠D=60°,E是AD上一点,且有DE=DB,求证AE=BE+BC 10
4个回答
2016-09-15
展开全部
证明:过A作AF⊥BC于F
∵∠EDB=60°,DE=DB
∴△EDB是等边三角形,DE=DB=EB
∵△ABC是等腰三角形
∴BF=CF,2BF=BC
又∵∠DAF=30°
∴AD=2DF
又:DF=DB+BF
∴AD=2(DB+BF)=2DB+2BF=2DB+BC
(AE+ED)=2DB+BC,其中ED=DB
∴AE=DB+BC=BE+BC
证明:延长DC到F,使CF=BD,连接AF,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABD=∠ACF,
在△ABD和△ACF中,
AB=AC
∠ABD=∠ACF
BD=CF
∴△ABD≌△ACF(SAS),
∴AD=AF,
又∵∠ADB=60°,
∴△ADF是等边三角形,
∴AD=DF,
∵AD=AE+DE,DF=DB+BC+CF,
又∵DE=DB,且∠ADB=60°
∴△DEB是等边三角形.
∴DE=BE=DB=CF,
∴AE+DE=BE+BC+DE,
∴AE=BE+BC.
∵∠EDB=60°,DE=DB
∴△EDB是等边三角形,DE=DB=EB
∵△ABC是等腰三角形
∴BF=CF,2BF=BC
又∵∠DAF=30°
∴AD=2DF
又:DF=DB+BF
∴AD=2(DB+BF)=2DB+2BF=2DB+BC
(AE+ED)=2DB+BC,其中ED=DB
∴AE=DB+BC=BE+BC
证明:延长DC到F,使CF=BD,连接AF,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABD=∠ACF,
在△ABD和△ACF中,
AB=AC
∠ABD=∠ACF
BD=CF
∴△ABD≌△ACF(SAS),
∴AD=AF,
又∵∠ADB=60°,
∴△ADF是等边三角形,
∴AD=DF,
∵AD=AE+DE,DF=DB+BC+CF,
又∵DE=DB,且∠ADB=60°
∴△DEB是等边三角形.
∴DE=BE=DB=CF,
∴AE+DE=BE+BC+DE,
∴AE=BE+BC.
展开全部
检举|3 分钟前syx54|当前分类:17 级排名:485你的图呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你的图呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询