设a>b>0,那么a^2+1/b(a-b)的最小值为多少
展开全部
分析:先利用基本不等式求得b(a-b)范围,进而代入原式,进一步利用基本不等式求得问题答案.
解答:
解:因为 a>b>0,b(a-b)≤[(b+a-b﹚/2]² =a²/4,
所以a² +1/b(a-b)≥a²+4/a²≥4,
当且仅当b=a-b,a²=2,
即a=√2,b=√2/2时取等号.
那么 a²+1/b(a-b)的最小值是4,
故答案为:4.
点评:本题主要考查了基本不等式在最值问题中的应用.解题的时候注意两次基本不等式等号成立的条件要同时成立.
有疑问可以追问哦,,。
解答:
解:因为 a>b>0,b(a-b)≤[(b+a-b﹚/2]² =a²/4,
所以a² +1/b(a-b)≥a²+4/a²≥4,
当且仅当b=a-b,a²=2,
即a=√2,b=√2/2时取等号.
那么 a²+1/b(a-b)的最小值是4,
故答案为:4.
点评:本题主要考查了基本不等式在最值问题中的应用.解题的时候注意两次基本不等式等号成立的条件要同时成立.
有疑问可以追问哦,,。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询