求解一道初三数学题,要有详细过程【不跳步】速度!!!!
1,特殊发现,如图1,若点E,F分别是边CD,CB的中点,求证菱形ABCD对角线AC,BD交点O为等边三角形AEF的外心
2若点E,F始终在边CD,CB上移动,记等边三角形AEF的外心为P
1)如图2,猜想等边三角形AEF的外心落在那一条直线上,并加以证明
2)如图3,当三角形AEF面积最小,过点P任意做一直线分别交DA于点M,交CD延长线于点N,试判断(1/DM)+(1/DN)是否为定值,若是,请求出定值,若不是,清说明理由
图由左至右分别为图1,图2,下面的是图3 展开
1)证明:如图1,分别连接OE、0F,
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ADC.AO=DC=BC,
∴∠COD=∠COB=∠AOD=90°.
∠ADO=∠ADC=×60°=30°,
又∵E、F分别为DC、CB中点,
∴OE=CD,OF=BC,AO=AD,
∴0E=OF=OA,
∴点O即为△AEF的外心.
(2)解:
①猜想:外心P一定落在直线DB上.
证明: 如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,
∴∠PIE=∠PJD=90°,
∵∠ADC=60°,
∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°,
∵点P是等边△AEF的外心,
∴∠EPA=120°,PE=PA,
∴∠IPJ=∠EPA,
∴∠IPE=∠JPA,
∴△PIE≌△PJA,
∴PI=PJ,
∴点P在∠ADC的平分线上,即点P落在直线DB上.
②1/DM+1/DN为定值2.
当AE⊥DC时.△AEF面积最小,
此时点E、F分别为DC、CB中点.
连接BD、AC交于点P,由(1)
可得点P即为△AEF的外心.
如图3.设MN交BC于点G,
设DM=x,DN=y(x≠0.y≠O),则CN=y-1,
∵BC∥DA,
∴△GBP≌△MDP.
∴BG=DM=x.
∴CG=1-x
∵BC∥DA,
∴△NCG∽△NDM,
∴CN/DN=CG/DM,
∴(y-1)/y=(1-x)/x,
∴x+y=2xy,
∴1/x+1/y=2,
即1/DM+1/DN=2.