已知an=1/(2n^2+4n),求前n项的Sn
2个回答
展开全部
裂项
an=1/(2n²+4n),
=1/2 ×1/[n(n+2)]
=1/4 ×[1/n-1/(n+2)]
∴Sn=a1+a2+a3+.........+an
=1/4[1-1/3+1/2-1/4+1/3-1/5+.......+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/4[1+1/2-1/(n+1)-1/(n+2)] (相消时是隔项相消,前面余两项,后面余两项)
=1/4[3/2-(2n+3)/(n²+3n+2)]
an=1/(2n²+4n),
=1/2 ×1/[n(n+2)]
=1/4 ×[1/n-1/(n+2)]
∴Sn=a1+a2+a3+.........+an
=1/4[1-1/3+1/2-1/4+1/3-1/5+.......+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/4[1+1/2-1/(n+1)-1/(n+2)] (相消时是隔项相消,前面余两项,后面余两项)
=1/4[3/2-(2n+3)/(n²+3n+2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询