∫(π,-π)sinkxsinlxdx

用分部积分可以做么... 用分部积分可以做么 展开
Dilraba学长
高粉答主

2019-06-02 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411051

向TA提问 私信TA
展开全部

∫(- π→π) sin(Kx)sin(Lx) dx,偶函数

= 2∫(0→π) (1/2)[cos(Kx - Lx) - cos(Kx + Lx)] dx

= ∫(0→π) cos[(K - L)x] dx - ∫(0→π) cos[(K + L)x] dx

= [1/(K - L)]sin[(K - L)x] - [1/(K + L)]sin[(K + L)x] |(0→π)

= [1/(K - L)]sin[(K - L)π] - [1/(K + L)]sin[(K + L)π]

= [2Lcos(Lπ)sin(Kπ) - 2Kcos(Kπ)sin(Lπ)]/(K² - L²)

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

我不是他舅
2013-02-15 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.8亿
展开全部
用积化和差
sinkxsinlx=-1/2[cos(kx+lx)-cos(kx-lx)]
所以原式=-1/2(k+l)∫cos(kx+lx)d(kx+lx)+1/2(k-l)∫cos(kx-lx)d(kx-lx)
=-sin(kx+lx)/(2k+2l)+sin(kx-lx)/(2k-2l)
=-sin(kπ+lπ)/(2k+2l)+sin(kπ-lπ)/(2k-2l)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-02-15
展开全部
积化和差公式:sinAsinB = (1/2)[cos(A - B) - cos(A + B)]
∫(- π→π) sin(Kx)sin(Lx) dx,偶函数
= 2∫(0→π) (1/2)[cos(Kx - Lx) - cos(Kx + Lx)] dx
= ∫(0→π) cos[(K - L)x] dx - ∫(0→π) cos[(K + L)x] dx
= [1/(K - L)]sin[(K - L)x] - [1/(K + L)]sin[(K + L)x] |(0→π)
= [1/(K - L)]sin[(K - L)π] - [1/(K + L)]sin[(K + L)π]
= [2Lcos(Lπ)sin(Kπ) - 2Kcos(Kπ)sin(Lπ)]/(K² - L²)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式