如图,在平面直角坐标系中,等腰直角三角形ABC两个顶点坐标分别为A(0,2)C(-1,0)
3个回答
展开全部
解:(1)连接MD,则角MDA=60度,当AB绕点D 顺时针旋转使得到的直线l 与圆 M 相切时,DM⊥AB,角MDA=90度,所以,此时的旋转角是-30度(或顺时针30度).
未旋转时,点D坐标(3/2,√3/2)
旋转后,直线l斜率k=√3/3,过点D,所以l 的解析式为:
y= x√3/3
(2)MN⊥CD,且与CD互相垂直平分.因为点N是BC的中点,MN是中位线
CD⊥AB,MN‖AB
∴MN⊥CD,同时MN平分CD
同时利用MN连线与CD的交点及点C组成的两个三角形全等,得出CD也平分了MN.
(3)第1种情况:PA⊥AN,P(3/4,√3/4)
第2种情况:PN⊥AN,P(9/4,3√3/4)
第3种情况:PA⊥PN,以AN为直径的圆与直线l的交点有2个
AN=√3
设直线l上的点P坐标为(x,x√3/3 ),则
PA^2+PN^2=AN^2=3
N点坐标为(5/2,√3/2)
(x-1)^2+(x√3/3)^2+(x-5/2)^2+(x√3/3-√3/2)^2=3
x^2-2x+1+x^2/3+x^2-5x+25/4+x^2/3-x+3/4=3
8x^2/3-8x+5=0
8x^2-24x+15=0
x=(6±√6)/4这是P点的横坐标,P点纵坐标是x√3/3
未旋转时,点D坐标(3/2,√3/2)
旋转后,直线l斜率k=√3/3,过点D,所以l 的解析式为:
y= x√3/3
(2)MN⊥CD,且与CD互相垂直平分.因为点N是BC的中点,MN是中位线
CD⊥AB,MN‖AB
∴MN⊥CD,同时MN平分CD
同时利用MN连线与CD的交点及点C组成的两个三角形全等,得出CD也平分了MN.
(3)第1种情况:PA⊥AN,P(3/4,√3/4)
第2种情况:PN⊥AN,P(9/4,3√3/4)
第3种情况:PA⊥PN,以AN为直径的圆与直线l的交点有2个
AN=√3
设直线l上的点P坐标为(x,x√3/3 ),则
PA^2+PN^2=AN^2=3
N点坐标为(5/2,√3/2)
(x-1)^2+(x√3/3)^2+(x-5/2)^2+(x√3/3-√3/2)^2=3
x^2-2x+1+x^2/3+x^2-5x+25/4+x^2/3-x+3/4=3
8x^2/3-8x+5=0
8x^2-24x+15=0
x=(6±√6)/4这是P点的横坐标,P点纵坐标是x√3/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询