展开全部
(1)OC=AB=2√2
∴C(0, 2√2)
点C抛物线上∴n = 2√2
∵A(-2, 0)在抛物线上,代入抛物线解析式得-4√2-2m+2√2=0
∴m = -√2
故抛物线解析是为y = -√2x² - √2x + 2√2
(2)∠OEF + ∠OFE + ∠EOF = 180°
∠OEB + ∠OBE + ∠EBO = 180°
∠OBE = ∠OEF = 45°
∴∠OFE = ∠OEB
∴∠BEF = ∠OFE - ∠OBE = ∠OEB - ∠BAO = ∠AOE
(3)△EOF为等腰三角形时
若OE = OF,则∠OEF = ∠OFE = 45°
∠EOF = 90°,不合题意
∴OE ≠ OF
同理可证FE ≠ FO
∴△EOF为等腰三角形时,EO = EF
由(2)∠BEF = ∠AOE
又∠OAE = ∠EBF
∴△OAE ≌ △EBF (AAS)
∴EB = OA = 2
过E作EH⊥OF于H,则BH = EH = BE / √2 = √2
OH = OB - BH = 2 - √2
∴E(-√2, 2 - √2)
(4)△ODF为直角三角形,且EO = EF
∴∠OFE = ∠FOE
∴∠EDO = 90°- ∠OFE = 90° - ∠FOE = ∠EOD
∴ED = EO
∴E为DF中点(以上步骤就是为了证明OE为Rt△ODF的中线)
连结FG
∴S△EDG = S△EFG(难点就在这一步,由中点得到面积转换)
S△EPF = (2√2 +1)S△EGF
∴EP = (2√2 +1)EG(得到这一步,后面的就都好办了)
过E作EM⊥AO于M,过P作PN⊥AO于N
则EM∥PN
∴EM / PN = GE / GP
∵EP = (2√2 +1)EG
∴GP = GE + EP = (2√2 + 2)GE
则PN / EM = GP / GE = 2√2 + 2
∵EM = 2 - √2
∴PN = (2√2 + 2)EM = 2√2
故P点的纵坐标为2√2
P点在抛物线上
解方程-√2x² - √2x + 2√2 = 2√2
解得x = 0 或 x = -1
∴P点的坐标为(0, 2√2),或(-1, 2√2)
∴C(0, 2√2)
点C抛物线上∴n = 2√2
∵A(-2, 0)在抛物线上,代入抛物线解析式得-4√2-2m+2√2=0
∴m = -√2
故抛物线解析是为y = -√2x² - √2x + 2√2
(2)∠OEF + ∠OFE + ∠EOF = 180°
∠OEB + ∠OBE + ∠EBO = 180°
∠OBE = ∠OEF = 45°
∴∠OFE = ∠OEB
∴∠BEF = ∠OFE - ∠OBE = ∠OEB - ∠BAO = ∠AOE
(3)△EOF为等腰三角形时
若OE = OF,则∠OEF = ∠OFE = 45°
∠EOF = 90°,不合题意
∴OE ≠ OF
同理可证FE ≠ FO
∴△EOF为等腰三角形时,EO = EF
由(2)∠BEF = ∠AOE
又∠OAE = ∠EBF
∴△OAE ≌ △EBF (AAS)
∴EB = OA = 2
过E作EH⊥OF于H,则BH = EH = BE / √2 = √2
OH = OB - BH = 2 - √2
∴E(-√2, 2 - √2)
(4)△ODF为直角三角形,且EO = EF
∴∠OFE = ∠FOE
∴∠EDO = 90°- ∠OFE = 90° - ∠FOE = ∠EOD
∴ED = EO
∴E为DF中点(以上步骤就是为了证明OE为Rt△ODF的中线)
连结FG
∴S△EDG = S△EFG(难点就在这一步,由中点得到面积转换)
S△EPF = (2√2 +1)S△EGF
∴EP = (2√2 +1)EG(得到这一步,后面的就都好办了)
过E作EM⊥AO于M,过P作PN⊥AO于N
则EM∥PN
∴EM / PN = GE / GP
∵EP = (2√2 +1)EG
∴GP = GE + EP = (2√2 + 2)GE
则PN / EM = GP / GE = 2√2 + 2
∵EM = 2 - √2
∴PN = (2√2 + 2)EM = 2√2
故P点的纵坐标为2√2
P点在抛物线上
解方程-√2x² - √2x + 2√2 = 2√2
解得x = 0 或 x = -1
∴P点的坐标为(0, 2√2),或(-1, 2√2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询