求解这题不定积分
展开全部
∫ (-π/2->π/2) (xsinx + cosx) dx
=2∫ (0->π/2) (xsinx + cosx) dx
=2{∫ (0->π/2) xsinx dx + [sinx]| (0->π/2) }
=2{ -∫ (0->π/2) xdcosx + 1 }
=2{ -[xcosx]|(0->π/2) + ∫ (0->π/2) cosx dx + 1 }
=2{ [sinx]|(0->π/2) + 1 }
=4
=2∫ (0->π/2) (xsinx + cosx) dx
=2{∫ (0->π/2) xsinx dx + [sinx]| (0->π/2) }
=2{ -∫ (0->π/2) xdcosx + 1 }
=2{ -[xcosx]|(0->π/2) + ∫ (0->π/2) cosx dx + 1 }
=2{ [sinx]|(0->π/2) + 1 }
=4
追问
思路是
追答
f(x)=xsinx + cosx
f(-x) = f(x)
∫ (-π/2->π/2) (xsinx + cosx) dx
=2∫ (0->π/2) (xsinx + cosx) dx
=2∫ (0->π/2) xsinx dx +2∫ (0->π/2) cosx dx
分部积分
=-2∫ (0->π/2) xdcosx +2
=-2[xcosx]|(0->π/2) + 2∫ (0->π/2) cosx dx + 2
=2∫ (0->π/2) cosx dx + 2
=2 [sinx]|(0->π/2) +2
=2+2
=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询