下面这个积分怎么求?
展开全部
a > 0 时,∫<e, +∞>dx/[x(lnx)^(a+1)]
= ∫<e, +∞>(lnx)^(-a-1)dlnx
= (-1/a)[(lnx)^(-a)]<e, +∞> = (-1/a)(0-1) = 1/a;
a = 0 时,∫<e, +∞>dx/(xlnx) = ∫<e, +∞>dlnx/(lnx) = [lnlnx]<e, +∞> = +∞, 发散;
a < 0 时,∫<e, +∞>dx/[x(lnx)^(a+1)]
= ∫<e, +∞>(lnx)^(-a-1)dlnx = (-1/a)[(lnx)^(-a)]<e, +∞> = +∞, 发散.
= ∫<e, +∞>(lnx)^(-a-1)dlnx
= (-1/a)[(lnx)^(-a)]<e, +∞> = (-1/a)(0-1) = 1/a;
a = 0 时,∫<e, +∞>dx/(xlnx) = ∫<e, +∞>dlnx/(lnx) = [lnlnx]<e, +∞> = +∞, 发散;
a < 0 时,∫<e, +∞>dx/[x(lnx)^(a+1)]
= ∫<e, +∞>(lnx)^(-a-1)dlnx = (-1/a)[(lnx)^(-a)]<e, +∞> = +∞, 发散.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询