1个回答
展开全部
∫(tanx)^4 dx
=∫(tanx)^2 *[(secx)^2 -1] dx
=∫(tanx)^2 * (secx)^2 dx - ∫(tanx)^2 dx
=∫(tanx)^2 d(tanx) - ∫[(secx)^2 -1 ]dx
=(tanx)^3/3 - ∫(secx)^2 dx +∫ 1 dx
=(tanx)^3/3 -tanx + x + C
=∫(tanx)^2 *[(secx)^2 -1] dx
=∫(tanx)^2 * (secx)^2 dx - ∫(tanx)^2 dx
=∫(tanx)^2 d(tanx) - ∫[(secx)^2 -1 ]dx
=(tanx)^3/3 - ∫(secx)^2 dx +∫ 1 dx
=(tanx)^3/3 -tanx + x + C
更多追问追答
追答
原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:
=x+cosx/(1+sinx)+C
设t=e^(2x),x=(lnt)/2,dx=1/(2t) dt
∫dx/[1+e^(2x)]
= (1/2)∫dt/[t(1+t)]
= (1/2)∫[(1+t)-t]/[t(1+t)] dt
= (1/2)∫[1/t - 1/(1+t)] dt
= (1/2)[ln|t| - ln|1+t|] + C
= (1/2)[ln|e^(2x)| - ln|1+e^(2x)] + C
= x - (1/2)ln|1+e^(2x)| + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |