
如图 在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.1求证:BC1⊥平面AB1C;2求证:BC1//平面A1CD
展开全部
证明:(1)∵三棱柱ABC-A1B1C1为直三棱柱
∴CC1⊥平面ABC;
又∵AC⊂平面ABC
∴CC1⊥AC
又∵AC⊥BC,CC1∩BC=C
∴AC⊥平面B1C1CB
又∵B1C⊂平面B1C1CB
∴B1C⊥AC
又∵BC=BB1,
∴平面B1C1CB为正方形,
∴B1C⊥BC1,又∵B1C∩AC=C
∴BC1⊥平面AB1C;
(2)连接BC1,连接AC1于E,连接DE,E是AC1中点,
D是AB中点,则DE∥BC1,
又DE⊂面CA1D1,BC1⊄面CA1D1
∴BC1∥面CA1D
∴CC1⊥平面ABC;
又∵AC⊂平面ABC
∴CC1⊥AC
又∵AC⊥BC,CC1∩BC=C
∴AC⊥平面B1C1CB
又∵B1C⊂平面B1C1CB
∴B1C⊥AC
又∵BC=BB1,
∴平面B1C1CB为正方形,
∴B1C⊥BC1,又∵B1C∩AC=C
∴BC1⊥平面AB1C;
(2)连接BC1,连接AC1于E,连接DE,E是AC1中点,
D是AB中点,则DE∥BC1,
又DE⊂面CA1D1,BC1⊄面CA1D1
∴BC1∥面CA1D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询