等差数列中,若Sm=Sp(m≠p),则Sm+p=0怎么证明 10
2个回答
展开全部
a(n)=a+(n-1)d,
s(n)=na+n(n-1)d/2,
s(m)=ma+m(m-1)d/2 = s(p) = pa + p(p-1)d/2,
0=(p-m)a + d/2[p^2 - p - m^2 +m] = (p-m)a + [(p-m)(p+m) - (p-m)]d/2
=(p-m)[a + (p+m-1)d/2],
m≠p,
0 = a + (p+m-1)d/2,
s(m+p)=(m+p)a + (m+p)(m+p-1)d/2 = (m+p)[a + (m+p-1)d/2] = (m+p)*0 = 0.
-----------------------------
s(m)=p, s(p)=m, m≠p,
p = s(m) = ma + m(m-1)d/2,
m = s(p) = pa + p(p-1)d/2,
m-p = (p-m)a + d/2[p^2 - p - m^2 + m] = (p-m)a + [(p-m)(p+m) - (p-m)]d/2,
= (p-m) [ a + (p+m-1)d/2],
m≠p,
-1 = a + (p+m-1)d/2,
s(m+p) = (m+p)a + (m+p)(m+p-1)d/2
=(m+p)[a + (m+p-1)d/2] = (m+p)[-1] = -(m+p).
s(n)=na+n(n-1)d/2,
s(m)=ma+m(m-1)d/2 = s(p) = pa + p(p-1)d/2,
0=(p-m)a + d/2[p^2 - p - m^2 +m] = (p-m)a + [(p-m)(p+m) - (p-m)]d/2
=(p-m)[a + (p+m-1)d/2],
m≠p,
0 = a + (p+m-1)d/2,
s(m+p)=(m+p)a + (m+p)(m+p-1)d/2 = (m+p)[a + (m+p-1)d/2] = (m+p)*0 = 0.
-----------------------------
s(m)=p, s(p)=m, m≠p,
p = s(m) = ma + m(m-1)d/2,
m = s(p) = pa + p(p-1)d/2,
m-p = (p-m)a + d/2[p^2 - p - m^2 + m] = (p-m)a + [(p-m)(p+m) - (p-m)]d/2,
= (p-m) [ a + (p+m-1)d/2],
m≠p,
-1 = a + (p+m-1)d/2,
s(m+p) = (m+p)a + (m+p)(m+p-1)d/2
=(m+p)[a + (m+p-1)d/2] = (m+p)[-1] = -(m+p).
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询