高手来解数学题吧!

如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,-2),... 如图,已知抛物 线C:y2=4x,过点A(1,2)作抛物线C的弦 AP,AQ. (Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出 定点的坐标; (Ⅱ)假设直线PQ过点T(5,-2),请问是否存 在以PQ为底边的等腰三角形APQ?若存在,求出 △APQ的个数?如果不存在,请说明理由. 展开
百度网友7c452c434
2013-02-16
知道答主
回答量:36
采纳率:0%
帮助的人:18.8万
展开全部
(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴

AP


AQ
=0,∴(x1-1)(x2-1)+(y1-2)(y2-2)=0.
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)解:假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得
2m-2
2m2+2m+5-1
=-m,即m3+m2+3m-1=0.
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式