在三角形ABC中角ACB=90度 AC=BC 直线MN经过点C 且AD垂直MN于D BE垂直MN于点E,
问题:(1)当直线MN绕点c旋转到图1的位置时,求证:①△ADC全等于△CEB②DE=AD+BE(2)当直线MN绕点c旋转到图2的位置时,(1)中的结论还成立吗?若成立,...
问题:
(1)当直线MN绕点c旋转到图1的位置时,求证:①△ADC全等于△CEB ②DE=AD+BE
(2)当直线MN绕点c旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由
图:
要详细过程!此题给10分! 展开
(1)当直线MN绕点c旋转到图1的位置时,求证:①△ADC全等于△CEB ②DE=AD+BE
(2)当直线MN绕点c旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由
图:
要详细过程!此题给10分! 展开
展开全部
(1)因为∠ACB=90°所以∠ACD+∠BEC=90°
因为AD⊥MN于D所以∠ACD+∠DAC=90°
所以∠BEC=∠DAC
所以∠ACD=∠CBE
因为AC=BC
所以△ADC全等于△CEB
所以AD=CE DC=EB
因为DE=DC+CE
所以DE=AD+BE
(2)△ADC全等于△CEB仍成立,DE=AD+BE不成立
因为∠ACB=90°所以∠DCA+∠ECB=90°
因为AD⊥MN于D所以∠DCA+∠CAD=90°
所以∠ECB=∠CAD
所以∠ACD=∠CBE
因为AC=CB
所以△ADC全等于△CEB
因为AD⊥MN于D所以∠ACD+∠DAC=90°
所以∠BEC=∠DAC
所以∠ACD=∠CBE
因为AC=BC
所以△ADC全等于△CEB
所以AD=CE DC=EB
因为DE=DC+CE
所以DE=AD+BE
(2)△ADC全等于△CEB仍成立,DE=AD+BE不成立
因为∠ACB=90°所以∠DCA+∠ECB=90°
因为AD⊥MN于D所以∠DCA+∠CAD=90°
所以∠ECB=∠CAD
所以∠ACD=∠CBE
因为AC=CB
所以△ADC全等于△CEB
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询