多位数乘法的快速计算方法有哪些?
多位数乘法的快速计算方法如下:
1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
扩展资料
乘法原理:
如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
设 A是 m×n 的矩阵。
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
多位数乘法的快速计算方法如下:
1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6、 十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一 个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一
2014-01-21
以手指为基础。脑记十位数,手示个位数,可以减少思维和计算上的负担,也有利于口算能力。大多数人用右手写字,左手就用
来记数。
我们把和拇指方向相同的手指叫做该数的外指,和拇指方向相反的手指叫做该数的内指。
1.拇指屈表示1。这时1的外指是1,内指是4。
2.拇指,食指同时屈表示2。这时2的外指是2,内指是3。
……………………
5.五指全屈表示5。这时5的外指是5,内指是0。
6.拇指伸出表示6。这时6的外指是1,内指是4。
……………………
10.五指全伸表示0。这时0的外指是5,内指是0。
凑数:两数之和等于5,它们互为凑数。如:1和4
尾数:大于5而小于10的数减去5所得的数叫该数的尾数。如:6的尾数为1
补数:两数之和为10,100,1000……它们互为补数。如:4和6
多位数乘多位数
速算法的多位数乘法是完全建立在一位数乘法的基础上的
一,基本规律
1.看看积的位数:设被乘数是n位数,乘数是m位数,那么积就是n+m位。
2.看看运算次数:任何两个多位数相乘,乘数和被乘数的每位数都要相乘一次,不能少乘也不能多乘。由于一位数乘n位数的相乘
次数为n+1次,因此m位数乘n位数总乘数为(n+1)*m次。(含首位0)
3.看看运算顺序:采用高位算起,被乘数和乘数依一定程序同时从“逐位乘”的原理出发,通过找出相乘积的“同位数”将积的每个“同
位数”分别相加,直接找出总积的每位数,边算边清位直接报出每位得数,达到“逐位清”。这种运算方法可以直呼得数,简化运算
过程,快速,准确,方便。
每位数:相同数位上的数。数位:个位,十位,百位……叫数位。
如一个乘法的传统竖式:
32
* 73
96
224
2336
其中9和4就叫同位数。这个小学都有教吧。
二,计算方法
史丰收的多位数乘法,是直接找总积的每位数来进行的,而总积的每位数,就是所有各位数逐位相乘中所得到的各个“同位数”之
和。
1.结合用手指记数
2.被乘数面前写0
3.乘数的首位与被乘数的尾位数对齐,这样写,利于看清楚运算程序,找相乘二数。以首尾相接为准,以前(左边)都是乘数的
首数开头乘,简称“首开头”。以后(右边)都是被乘数的尾数开头乘,简称“尾开头”
4.书写积的每位数:积的首位数对准开头的0,后面逐位对齐,最后积刚好对到乘数的最后一位,因为被乘数首位前的0多出一
位,而乘数与被乘数首尾