当x趋于无穷时,【(3+x)/(6+x)】^【(x-1)/2】的极限怎么算?

 我来答
Beihai人力资源
高粉答主

2017-12-19 · 职业化修炼,教你如何从HR菜鸟成长为HRD
Beihai人力资源
采纳数:4704 获赞数:48293

向TA提问 私信TA
展开全部

解:

lim(x→∞)[(3+x)/(6+x)]^[(x-1)/2]= {lim(x→∞)1/[1+3/(x+3)]^[(x+3)/3]}^(3/2)*lim(x→∞)1/[1+3/(x+3)]^(-2)=1/e^(3/2)=e(-3/2)

知识延展:

  1. 极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。

  2. 极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式