设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的

设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图像与x轴的两个交点间的距离不小于|2t+m|,求m、n的值... 设m、n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图像与x轴的两个交点间的距离不小于|2t+m|,求m、n的值 展开
vdakulav
2013-02-17 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4474
采纳率:74%
帮助的人:1812万
展开全部
解:
设二次函数y=x²+(3-mt)x-3mt与x轴的交点为x1,x2,
显然,x²+(3-mt)x-3mt=0时的根就是x1和x2,
又因为:
x²+(3-mt)x-3mt=(x-mt)(x+3)=0
因此:
|x1-x2|=|mt-3|
根据题意:
|mt-3| ≥ |2t+n|
因此:
(mt-3)² ≥ (2t+n)²
化简得:
(m²-4)t²+(6m-4n)t+9-n² ≥ 0
因为上式对于任何t都成立,因此该二次函数必定能配方成完全平方式,也就是说:
√△=0,且m²-4>0,于是:
△=(6m-4n)²-4(m²-4)(9-n²)
=4(mn-6)²=0
∴mn=6
m、n为正整数,m>2(m<-2舍),因此:
m=3,n=2或者
m=6,n=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式