∫x^3*cosx^2dx 求过程阿!感谢!
2个回答
展开全部
∫ x³cos²x dx
= ∫ x³(1 + cos2x)/2 dx
= ∫ x³/2 dx + (1/2)∫ x³cos2x dx
= x⁴/8 + (1/2)∫ x³ d((sin2x)/2)
= x⁴/8 + (1/4)x³sin2x - (1/4)∫ 3x²sin2x dx
= x⁴/8 + (1/4)x³sin2x - (3/4)∫ x² d(- (cos2x)/2)
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)∫ 2xcos2x dx
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/4)∫ x d((sin2x)/2)
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)xsin2x - (3/8)∫ sin2x dx
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)xsin2x + (3/8)(- (cos2x)/2) + C
= x⁴/8 + (1/4)x³sin(2x) + (3/8)x²cos(2x) - (3/8)xsin(2x) - (3/16)cos(2x) + C
= ∫ x³(1 + cos2x)/2 dx
= ∫ x³/2 dx + (1/2)∫ x³cos2x dx
= x⁴/8 + (1/2)∫ x³ d((sin2x)/2)
= x⁴/8 + (1/4)x³sin2x - (1/4)∫ 3x²sin2x dx
= x⁴/8 + (1/4)x³sin2x - (3/4)∫ x² d(- (cos2x)/2)
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)∫ 2xcos2x dx
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/4)∫ x d((sin2x)/2)
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)xsin2x - (3/8)∫ sin2x dx
= x⁴/8 + (1/4)x³sin2x + (3/8)x²cos2x - (3/8)xsin2x + (3/8)(- (cos2x)/2) + C
= x⁴/8 + (1/4)x³sin(2x) + (3/8)x²cos(2x) - (3/8)xsin(2x) - (3/16)cos(2x) + C
追问
正确答案显示1/2(x^2sinx^2+cosx^2)+c。。但不知道怎么出来的
追答
sorry,2次方在x上。
∫ x³cos(x²) dx
= ∫ x²cos(x²) d(x²/2)
= (1/2)∫ x² d(sin(x²))
= (1/2)x²sin(x²) - (1/2)∫ sin(x²) d(x²)
= (1/2)x²sin(x²) + (1/2)cos(x²) + C
= (1/2)[x²sin(x²) + cos(x²)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |