3个回答
展开全部
因为公式:1-1/n^2=[(n-1)/n]×[(n+1)/n]
然后一一带入即可,即(1-1/2²)(1-1/3²)(1-1/4²).......(1-1/100²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4).......(1-1/100)(1+1/100)
=1/2×3/2×2/3×4/3×3/4×5/4×......×100/99×99/100×101/100
=1/2×101/100
=101/200
然后一一带入即可,即(1-1/2²)(1-1/3²)(1-1/4²).......(1-1/100²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4).......(1-1/100)(1+1/100)
=1/2×3/2×2/3×4/3×3/4×5/4×......×100/99×99/100×101/100
=1/2×101/100
=101/200
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1-1/2²=(1-1/2)(1+1/2)=(1/2)×(3/2)
1-1/3²=(1-1/3)(1+1/3)=(2/3)×(4/3)
…………
1-1/99²=(1-1/99)(1+1/99)=(98/99)×(100/99)
1-1/100²=(1-1/100)(1+1/100)=(99/100)×(101/100)
原式=(1/2)×(3/2))×(2/3)×(4/3)×……×(98/99)×(100/99)×(99/100)×(101/100)=101/200
1-1/3²=(1-1/3)(1+1/3)=(2/3)×(4/3)
…………
1-1/99²=(1-1/99)(1+1/99)=(98/99)×(100/99)
1-1/100²=(1-1/100)(1+1/100)=(99/100)×(101/100)
原式=(1/2)×(3/2))×(2/3)×(4/3)×……×(98/99)×(100/99)×(99/100)×(101/100)=101/200
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-1/2²)(1-1/3²)(1-1/4²).......(1-1/100²)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4).......(1-1/100)(1+1/100)
=1/2*3/2*2/3*4/3*3/4*5/4*......*100/99*99/100*101/100
=1/2*101/100
=101/200
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4).......(1-1/100)(1+1/100)
=1/2*3/2*2/3*4/3*3/4*5/4*......*100/99*99/100*101/100
=1/2*101/100
=101/200
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询