总结一下高考理数圆锥曲线椭圆大题类型
LZ您好
这个没什么好总结的吧,基本十个题目,九个套路(韦达定理),一个不是套路的会考几何关系,永远记得你在做几何!几何!几何!所以一定要画图不可空手套白狼!画完图不是按韦达定理出牌的剩下一个也解了...
你非要问圆锥曲线怎么考,要认真说的话...
第一问求曲线方程,这是基础中的基础!能判断是什么曲线的请直接设曲线方程(但是需要注意设标准方程还是一般方程,设的不好解题难度会变大);不能判断曲线的用已知条件设F(x,y)=0;当然作为老师我很欢迎有人使用参数法来求圆锥曲线
如果第一问不是求椭圆双曲线抛物线的方程,那一般可能会问圆锥曲线的定义(a,b,c,e,渐进性,准线在哪,这都是什么,有什么性质).
第二问或者第三问十有八九考的是韦达定理,实质是直线与圆锥曲线的位置关系,重点是中点弦问题,弦长公式...注意有一个交点的情况对抛物线来说除开判别式之外,可能有二次项为0的可能性!
如果一次考试中圆锥曲线居然和韦达定理撇清了关系,那么大概率考的是曲线上一点和曲线有关的另外若干个点(譬如定点,焦点,准线上某点,渐进线上某点)形成了某个图形,这个图形小概率是RT三角形,大概率是普通三角形,小概率是梯形或者平行四边形,暂时没见过出五边形以上的题目...这类题目勾搭的知识点是勾股定理,解三角形有关的正弦定理,余弦定理,三角形面积公式...当然还有你小学就应该学过的切割图形的方法.
然后就是细节问题了,譬如斜率是否存在,共线问题(化为斜率相等,或者向量等比例),点线对称问题...小概率大题考抛物线时要注意y型抛物线可以当作二次函数,所以求导,函数单调性可能也会综合考察!
最后就是注意术语:求XX的大小找等量关系;求XX的取值范围找不等量关系或者范围;问你是否存在一律说假设存在,然后去求,求到后面发现会有矛盾那么说明不存在;求证问题与定点定量有关,两种解法,解法1变动的元素找出来,然后合并同类项,发现变动的元素系数为0;解法2,取特殊点(特解),得到符合题意的定值点或者定量数值,然后证明这个具体数值确实符合题意;求最值那就变为函数/几何关系/三角代换/均值不等式 问题.