(r/l)^2sina^2看成整体t,cosa=√(1-t)展开,二项式展开(a+b)^n,n可以为任何一个数。
二项式展开的公式,n可以为任何值,对于任意一个n次多项式,总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项。
后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。
扩展资料:
二项式定理与方程的关系:
由于二次以上的多项式,在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的一元整式方程,我们无法简单地像一元二次方程那样,只需配出关于x的完全平方式。
然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。对于求解二次以上的一元整式方程,往往需要大量的巧妙的变换,无论是求解过程,还是求根公式,其复杂程度都要比一次、二次方程高出很多。
这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现性和概率。
推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。
参考资料来源:百度百科—二项式定理
广告 您可能关注的内容 |