1个回答
展开全部
设球的半径为R,则(4/3)πR³=(32/3)π,解得R=2
从而 长方体的对角线d=2R=4,设AB=a,BC=b,因为AA1=2,
则 a²+b²+2²=d²=16,所以 a²+b²=12
Vo-ABCD=(1/3)ab·(1/2)·AA1=ab/3≤(a²+b²)/6=2
当且仅当a=b=√6时,四棱锥O-ABCD的体积的最大值为2.
从而 长方体的对角线d=2R=4,设AB=a,BC=b,因为AA1=2,
则 a²+b²+2²=d²=16,所以 a²+b²=12
Vo-ABCD=(1/3)ab·(1/2)·AA1=ab/3≤(a²+b²)/6=2
当且仅当a=b=√6时,四棱锥O-ABCD的体积的最大值为2.
追问
d=2R?为什么啊
追答
长方体的外接球,长方体的中心就是外接球的球心,从而其体对角线经过球心。即d=2R.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询