求此题答案谢谢
2个回答
展开全部
(1)
S△ABC=½acsinB
a=2S△ABC/(csinB)
=2·6/(3√2·sin¼π)
=4
由余弦定理得
b²=a²+c²-2accosB
=4²+(3√2)²-2·4·3√2·cos¼π
=10
b=√10
由正弦定理得a/sinA=b/sinB
sinA=asinB/b=4·sin¼π/√10=2√5/5
(2)
a=4,c=3√2
a<c,A为锐角,cosA>0
cosA=√(1-sin²A)=√[1-(2√5/5)²]=√5/5
sin(2A-π/6)
=sin2Acosπ/6 -cos2Asinπ/6
=2sinAcosAcosπ/6 -(cos²A-sin²A)sinπ/6
=2·(2√5/5)·(√5/5)·(√3/2)-[(√5/5)²-(2√5/5)²]·½
=(3+4√3)/10
S△ABC=½acsinB
a=2S△ABC/(csinB)
=2·6/(3√2·sin¼π)
=4
由余弦定理得
b²=a²+c²-2accosB
=4²+(3√2)²-2·4·3√2·cos¼π
=10
b=√10
由正弦定理得a/sinA=b/sinB
sinA=asinB/b=4·sin¼π/√10=2√5/5
(2)
a=4,c=3√2
a<c,A为锐角,cosA>0
cosA=√(1-sin²A)=√[1-(2√5/5)²]=√5/5
sin(2A-π/6)
=sin2Acosπ/6 -cos2Asinπ/6
=2sinAcosAcosπ/6 -(cos²A-sin²A)sinπ/6
=2·(2√5/5)·(√5/5)·(√3/2)-[(√5/5)²-(2√5/5)²]·½
=(3+4√3)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询