在三角形ABC中,角A,B,C所对的边分别为a,b,c,且ccosB+bcosc=3acosB.求coB的值.

若向量BA*向量BC=2,求b的最小值... 若向量BA*向量BC=2,求b的最小值 展开
mm7723806_8
2013-02-18 · TA获得超过913个赞
知道小有建树答主
回答量:1072
采纳率:50%
帮助的人:508万
展开全部
(1)由a/sinA=b/sinB=c/sinC=2R(R为三角形ABC外切圆半径)得到:a=2RsinA,b=2RsinB,c=2RsinC,代入ccosB+bcosC=3acosB得到:2RsinCcosB+2RsinBcosC=3x2RsinAcosB,sinCcosB+sinBcosC=3sinAcosB,sin(B+C)=3sinAcosB,sin(180-A)=3sinAcosB,sinA=3sinAcosB,3cosB=1,故:cosB=1/3
(2)向量BA*向量BC=|AB||BC|cos∠ABC=cacosB=2,由于cosB=1/3,故:ac=6,c=6/a
b^2=a^2+c^2-2accosB=a^2+(6/a)^2-2x2=a^2+(6/a)^2-4≥2√[a^2x(6/a)^2]-4=12-4=8,当且仅当a=6/a即a=√6时取最小值,从而b的最小值为√8=2√2。
wuhnacxy
2013-02-18 · 超过32用户采纳过TA的回答
知道答主
回答量:120
采纳率:0%
帮助的人:90.3万
展开全部
第一问:1/3
方法:用正弦函数公式,吧边化成角,然后你会发现等式的一边有一个sinCcosB+cosCsinB , 于是可以把它化成sin(B+C) , sin(B+C)=sin(180-A)=sinA , 所以cosB 等于 1/3
第二问:不会啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式