这道题怎么写啊🙁🙁🙁
展开全部
n[(1+1/n)^n-e]
=n{e^ln[(1+1/n)^n]-e}
=ne{e^[nln(1+1/n)-1]-1}
原式=lim(n->∞) ne[nln(1+1/n)-1]
=e*lim(n->∞) [nln(1+1/n)-1]/(1/n)
=e*lim(n->∞) [ln(1+1/n)+n/(1+1/n)*(-1/n^2)]/(-1/n^2)
=e*lim(n->∞) [ln(1+1/n)-1/(n+1)]/(-1/n^2)
=e*lim(n->∞) [1/(1+1/n)*(-1/n^2)+1/(n+1)^2]/(2/n^3)
=(e/2)*lim(n->∞) [(n^3)/(n+1)^2-(n^2)/(n+1)]
=(e/2)*lim(n->∞) (-n^2)/(n+1)^2
=-e/2
=n{e^ln[(1+1/n)^n]-e}
=ne{e^[nln(1+1/n)-1]-1}
原式=lim(n->∞) ne[nln(1+1/n)-1]
=e*lim(n->∞) [nln(1+1/n)-1]/(1/n)
=e*lim(n->∞) [ln(1+1/n)+n/(1+1/n)*(-1/n^2)]/(-1/n^2)
=e*lim(n->∞) [ln(1+1/n)-1/(n+1)]/(-1/n^2)
=e*lim(n->∞) [1/(1+1/n)*(-1/n^2)+1/(n+1)^2]/(2/n^3)
=(e/2)*lim(n->∞) [(n^3)/(n+1)^2-(n^2)/(n+1)]
=(e/2)*lim(n->∞) (-n^2)/(n+1)^2
=-e/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询