2个回答
展开全部
证明就是了:
(1)仅证f(x)在x0这一点左导数存在的情形:此时极限
lim(x→x0-0)[f(x)-f(x0)]/(x-x0) = f'-(x0)
存在,于是
lim(x→x0-0)f(x) =f(x0)+lim(x→x0-0){[f(x)-f(x0)]/(x-x0)}*(x-x0) = f(x0),
即f(x)在x0左连续。
右导数存在的情形类似证明。
(2)是可导的充要条件。
注:以上证明不管f(x)是否为分段函数都成立。
(1)仅证f(x)在x0这一点左导数存在的情形:此时极限
lim(x→x0-0)[f(x)-f(x0)]/(x-x0) = f'-(x0)
存在,于是
lim(x→x0-0)f(x) =f(x0)+lim(x→x0-0){[f(x)-f(x0)]/(x-x0)}*(x-x0) = f(x0),
即f(x)在x0左连续。
右导数存在的情形类似证明。
(2)是可导的充要条件。
注:以上证明不管f(x)是否为分段函数都成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询