如图,数学,求极限?
3个回答
高粉答主
2019-01-13 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
L=lim(x->∞) ( π/2 - arctanx ) ^(1/lnx)
lnL
=lim(x->∞) ln( π/2 - arctanx )/ lnx (∞/∞ 分子分母分别求导)
=lim(x->∞) { -1/[( π/2 - arctanx ).(1+x^2)] }/ (1/x)
=lim(x->∞) -x/[( π/2 - arctanx ).(1+x^2) ]
=lim(x->∞) -[1/[x( π/2 - arctanx )] . lim(x->∞) [x^2/(1+x^2) ]
=lim(x->∞) -[1/[x( π/2 - arctanx )]
=lim(x->∞) -(1/x)/( π/2 - arctanx ) (0/0 分子分母分别求导)
=lim(x->∞) (1/x^2)/[ -1/(1+x^2) ]
=lim(x->∞) -(1+x^2) /x^2
=-1
=> L =e^(-1)
lim(x->∞) ( π/2 - arctanx ) ^(1/lnx) = e^(-1)
lnL
=lim(x->∞) ln( π/2 - arctanx )/ lnx (∞/∞ 分子分母分别求导)
=lim(x->∞) { -1/[( π/2 - arctanx ).(1+x^2)] }/ (1/x)
=lim(x->∞) -x/[( π/2 - arctanx ).(1+x^2) ]
=lim(x->∞) -[1/[x( π/2 - arctanx )] . lim(x->∞) [x^2/(1+x^2) ]
=lim(x->∞) -[1/[x( π/2 - arctanx )]
=lim(x->∞) -(1/x)/( π/2 - arctanx ) (0/0 分子分母分别求导)
=lim(x->∞) (1/x^2)/[ -1/(1+x^2) ]
=lim(x->∞) -(1+x^2) /x^2
=-1
=> L =e^(-1)
lim(x->∞) ( π/2 - arctanx ) ^(1/lnx) = e^(-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询