2个回答
展开全部
拉格朗日中值定理是考研数学复习的重点,经常出现在证明题中,是考研数学的重点和难点。2009年的考研数学(包括数一、数二、数三)真题中的一道证明题中的第一问甚至要求证明该定理。下面文都考研数学教研老师结合该真题,给出该定理的三种证明思路,希望能帮助同学们掌握和利用该定理。
首先,我们一起看一下该定理:
(拉格朗日中值定理)
然后,我们一起学习三种具体的证明方法:
1、原函数构造法
下面给出具体的证明过程:
2、作差构造函数法
该法也主要利用罗尔定理证明,只是函数构造方法与1有所不同,下面给出具体的证明过程:
2018考研数学:拉格朗日中值定理的三种证明方法
3、行列式法
考研数学复习
上述三种方法都是基于罗尔定理证明的,主要是构造出一个满足罗尔定理的函数。拉格朗日中值定理的证明方法,同学们务必要牢牢掌握至少一种。另外,同学们在做与拉格朗日中值定理相关的证明题时,可以借鉴上述三种方法来构造函数。从拉格朗日中值定理的证明方法中,我们也会发现数学的方法多种多样,不拘泥于一种形式。所以,在平时的做题过程中,同学们要灵活多变,注意选用适合的方法解决题目。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2019-01-07 · 知道合伙人教育行家
关注
展开全部
考察函数 f(x)=e^x,
当 x>0 时,函数在 [0,x] 上满足拉格朗日中值定理,因此存在 ξ∈(0,x) 使
f'(ξ)=[f(x) - f(0)] / (x - 0),
也即 e^ξ = (e^x - 1) / x,
由于 e^ξ>e^0=1,
所以 (e^x - 1) / x>1,因此 e^x>1+x;
当 x<0 时,用 [x,0] 上的拉格朗日中值定理,同理可得 e^x>1+x。
当 x>0 时,函数在 [0,x] 上满足拉格朗日中值定理,因此存在 ξ∈(0,x) 使
f'(ξ)=[f(x) - f(0)] / (x - 0),
也即 e^ξ = (e^x - 1) / x,
由于 e^ξ>e^0=1,
所以 (e^x - 1) / x>1,因此 e^x>1+x;
当 x<0 时,用 [x,0] 上的拉格朗日中值定理,同理可得 e^x>1+x。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询