(2012的三次方减去2×2012的二次方减去2010)÷(2012的三次方加上2012的平方减去2013)
展开全部
设2012=n
则 (2012³-2×2012-2010)÷(2012³+2012²-2013)
=(n³-3n+2)÷(n³+n²-n-1)
=(n³-2n²+2n²+n-4n+2)÷(n³+n²-n-1)
=[(n³-2n²+n)+(2n²-4n+2)]÷[(n³+n²)-(n+1)]
=[n(n-1)²+2(n-1)²]÷[n²(n+1)-(n+1)]
=(n+2)(n-1)²÷(n²-1)(n+1)
=(n+2)(n-1)²÷(n+1)²(n-1)
=(n+2)(n-1)÷(n+1)²
=2014×2011÷2013²
=(2013+1)(2013-2)÷2013²
=(2013²+2013-2*2013-2)÷2013²
=(2013²-2015)÷2013²
=1-2015÷2013²
=1-2015/4052169
=4050154/4052169
则 (2012³-2×2012-2010)÷(2012³+2012²-2013)
=(n³-3n+2)÷(n³+n²-n-1)
=(n³-2n²+2n²+n-4n+2)÷(n³+n²-n-1)
=[(n³-2n²+n)+(2n²-4n+2)]÷[(n³+n²)-(n+1)]
=[n(n-1)²+2(n-1)²]÷[n²(n+1)-(n+1)]
=(n+2)(n-1)²÷(n²-1)(n+1)
=(n+2)(n-1)²÷(n+1)²(n-1)
=(n+2)(n-1)÷(n+1)²
=2014×2011÷2013²
=(2013+1)(2013-2)÷2013²
=(2013²+2013-2*2013-2)÷2013²
=(2013²-2015)÷2013²
=1-2015÷2013²
=1-2015/4052169
=4050154/4052169
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设:2012=A,
原式={A³-2A²-(A-2)}÷{A³+A²-(A+1)}
={A²(A-2)-(A-2)}÷{A²(A+1)-(A+1)}
={(A-2)(A²-1)}÷{(A+1)(A²-1)}
={(A-2)(A-1)(A+1)}÷{(A+1)²(A-1)}
=(A-2)÷(A+1)
=(2012-2)÷(2012+1)
=2010÷2013
=670÷671
≈1
原式={A³-2A²-(A-2)}÷{A³+A²-(A+1)}
={A²(A-2)-(A-2)}÷{A²(A+1)-(A+1)}
={(A-2)(A²-1)}÷{(A+1)(A²-1)}
={(A-2)(A-1)(A+1)}÷{(A+1)²(A-1)}
=(A-2)÷(A+1)
=(2012-2)÷(2012+1)
=2010÷2013
=670÷671
≈1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询