设f(x)连续,F(x)=∫(上限x^2,下限0) /x-t/dt,求F(x)
1个回答
展开全部
F(x)=∫(0->x^2) |x- t| dt
x^2 <x
x^2-x<0
0<x<1
case 1: 0<x<1
F(x)
=∫(0->x^2) |x- t| dt
=∫(0->x^2) (x- t) dt
= [xt -(1/2)t^2]|(0->x^2)
=x^3 -(1/2)x^4
case 2: x<0 or x>1
F(x)
=∫(0->x^2) |x- t| dt
=∫(0->x) |x- t| dt +∫(x->x^2) |x- t| dt
=∫(0->x) (x- t) dt -∫(x->x^2) (x- t) dt
=[xt -(1/2)t^2]|(0->x) -[xt -(1/2)t^2]|(x->x^2)
= x^2 - [x^3 -(1/2)x^4]
= x^2 - x^3 +(1/2)x^4
x^2 <x
x^2-x<0
0<x<1
case 1: 0<x<1
F(x)
=∫(0->x^2) |x- t| dt
=∫(0->x^2) (x- t) dt
= [xt -(1/2)t^2]|(0->x^2)
=x^3 -(1/2)x^4
case 2: x<0 or x>1
F(x)
=∫(0->x^2) |x- t| dt
=∫(0->x) |x- t| dt +∫(x->x^2) |x- t| dt
=∫(0->x) (x- t) dt -∫(x->x^2) (x- t) dt
=[xt -(1/2)t^2]|(0->x) -[xt -(1/2)t^2]|(x->x^2)
= x^2 - [x^3 -(1/2)x^4]
= x^2 - x^3 +(1/2)x^4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询