高数这道极限题怎么写?

 我来答
crs0723
2020-03-25 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4501万
展开全部
因为∑(k=1->n) (lnk)^2

=∑(k=1->n) (lnk-lnn+lnn)^2
=∑(k=1->n) [(lnk-lnn)^2+2(lnk-lnn)lnn+(lnn)^2]
=∑(k=1->n) (lnk-lnn)^2+∑(k=1->n) 2(lnk-lnn)lnn+∑(k=1->n) (lnn)^2
=∑(k=1->n) [ln(k/n)]^2+2lnn*∑(k=1->n) ln(k/n)+n*(lnn)^2
所以(1/n)*∑(k=1->n) (lnk)^2
=(1/n)*∑(k=1->n) [ln(k/n)]^2+2lnn*(1/n)*∑(k=1->n) ln(k/n)+(lnn)^2
又因为∑(k=1->n) lnk
=∑(k=1->n) (lnk-lnn+lnn)
=∑(k=1->n) (lnk-lnn)+∑(k=1->n) lnn
=∑(k=1->n) ln(k/n)+n*lnn
所以[(1/n)*∑(k=1->n) lnk]^2
=[(1/n)*∑(k=1->n) ln(k/n)+lnn]^2
=[(1/n)*∑(k=1->n) ln(k/n)]^2+2lnn*(1/n)*∑(k=1->n) ln(k/n)+(lnn)^2
原式=lim(n->∞) {(1/n)*∑(k=1->n) [ln(k/n)]^2+2lnn*(1/n)*∑(k=1->n) ln(k/n)+(lnn)^2-[(1/n)*∑(k=1->n) ln(k/n)]^2-2lnn*(1/n)*∑(k=1->n) ln(k/n)-(lnn)^2}
=lim(n->∞) {(1/n)*∑(k=1->n) [ln(k/n)]^2-[(1/n)*∑(k=1->n) ln(k/n)]^2}
=∫(0,1) (lnx)^2dx-[∫(0,1) lnxdx]^2
=x(lnx)^2|(0,1)-∫(0,1) xd[(lnx)^2]-[(xlnx-x)|(0,1)]^2
=-∫(0,1) 2lnxdx-1
=-2(xlnx-x)|(0,1)-1
=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式