高数定积分求解
2个回答
展开全部
let
x=2sinu
dx=2cosu du
x=0, u=0
x=2, u=π/2
∫(0->2) dx/[x+√(4-x^2) ]
=∫(0->π/2) 2cosu du/[2sinu+2cosu ]
=∫(0->π/2) cosu /(sinu+cosu) du
=(1/2) ∫(0->π/2) [(sinu+cosu) + (cosu -sinu) ] /(sinu+cosu) du
=(1/2) ∫(0->π/2) du + (1/2) ∫(0->π/2) (cosu -sinu) /(sinu+cosu) du
=(1/2) [u]|(0->π/2) +(1/2)[ln|sinu+cosu|]|(0->π/2)
=π/4
x=2sinu
dx=2cosu du
x=0, u=0
x=2, u=π/2
∫(0->2) dx/[x+√(4-x^2) ]
=∫(0->π/2) 2cosu du/[2sinu+2cosu ]
=∫(0->π/2) cosu /(sinu+cosu) du
=(1/2) ∫(0->π/2) [(sinu+cosu) + (cosu -sinu) ] /(sinu+cosu) du
=(1/2) ∫(0->π/2) du + (1/2) ∫(0->π/2) (cosu -sinu) /(sinu+cosu) du
=(1/2) [u]|(0->π/2) +(1/2)[ln|sinu+cosu|]|(0->π/2)
=π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询