高数,求不定积分
展开全部
∫dx/[x(x^4+1)] = ∫xdx/[x^2(x^4+1)]
= (1/2)∫dx^2/[x^2(x^4+1)] = (1/2)∫du/[u(u^2+1)]
= (1/2)∫[1/u - u/(1+u^2)]du = (1/2)lnu - (1/4)ln(1+u^2) + C
= (1/2)ln(x^2) - (1/4)ln(1+x^4) + C
= ln|x| - (1/4)ln(1+x^4) + C
= (1/2)∫dx^2/[x^2(x^4+1)] = (1/2)∫du/[u(u^2+1)]
= (1/2)∫[1/u - u/(1+u^2)]du = (1/2)lnu - (1/4)ln(1+u^2) + C
= (1/2)ln(x^2) - (1/4)ln(1+x^4) + C
= ln|x| - (1/4)ln(1+x^4) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询