高数,求不定积分
展开全部
let
x^2 = tanu
2x dx = (secu)^2 du
∫dx/[x(x^4+1)]
=(1/2)∫ 2xdx/[x^2.(x^4+1)]
=(1/2)∫ (secu)^2 du /[ tanu.(secu)^2]
=(1/2)∫ cotu du
=(1/2)ln|sinu| + C
=(1/2)ln|x^2/√(x^4+1) | + C
=ln|x| - (1/4)ln|x^4+1| + C
x^2 = tanu
2x dx = (secu)^2 du
∫dx/[x(x^4+1)]
=(1/2)∫ 2xdx/[x^2.(x^4+1)]
=(1/2)∫ (secu)^2 du /[ tanu.(secu)^2]
=(1/2)∫ cotu du
=(1/2)ln|sinu| + C
=(1/2)ln|x^2/√(x^4+1) | + C
=ln|x| - (1/4)ln|x^4+1| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询