已知:在三角形ABC中,角A,角B,角C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c。试判断三角形ABC的形状

妙酒
2013-02-19 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:20.6亿
展开全部
a^2-10a+25+b^2-24b+144+c^2-26c+169=25+144+169
(a-5)^2+(b-12)^2+(c-13)^2=25+144+169
a=10
b=24
c=26
10^2+24^2=26^2
所以符合勾股定理
所以是直角三角形

不明白,可以追问
如有帮助,记得采纳,
谢谢 祝学习进步!
追问
你是用的拆项法么?
追答
百度网友09706a0
2013-02-19 · TA获得超过263个赞
知道小有建树答主
回答量:358
采纳率:0%
帮助的人:133万
展开全部
a^2-10a+25+b^2-24b+144+c^2-26c+169=25+144+169
(a-5)^2+(b-12)^2+(c-13)^2=25+144+169
a=10
b=24
c=26
10^2+24^2=26^2
所以是直角三角形
以后这种题先配方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式