1个回答
展开全部
(n+1)an=2sn
na(n-1)=2s(n-1)
两式相减得
(n+1)an-na(n-1)=2an
(n+1)an-2an=na(n-1)
(n-1)an=na(n-1)
an/a(n-1)=n/(n-1)
an/a(n-1)=n/(n-1)
............
a3/a2=3/2
a2/a1=2/1
以上等式相乘得
an/a1=n
an=n
bn=(an)^2-[a(n-1)]^2
=n^2-(n-1)^2
=(n+n-1)(n-n+1)
=2n-1
Tn=b1+b2+.......+bn
=1+3+..........+2n-1
=(1+2n-1)*n/2
=n^2
na(n-1)=2s(n-1)
两式相减得
(n+1)an-na(n-1)=2an
(n+1)an-2an=na(n-1)
(n-1)an=na(n-1)
an/a(n-1)=n/(n-1)
an/a(n-1)=n/(n-1)
............
a3/a2=3/2
a2/a1=2/1
以上等式相乘得
an/a1=n
an=n
bn=(an)^2-[a(n-1)]^2
=n^2-(n-1)^2
=(n+n-1)(n-n+1)
=2n-1
Tn=b1+b2+.......+bn
=1+3+..........+2n-1
=(1+2n-1)*n/2
=n^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询