
若函数f(x)=[2cos^3x-sin2(x+π)-2cos(-x-π)+1] / [2+2cos^2(7π+x)+cos(-x)],求f(π/3)的值 10
2个回答
展开全部
f(x)=[2cos^3x-sin2(x+π)-2cos(-x-π)+1] / [2+2cos^2(7π+x)+cos(-x)]
=[2cos^3x-sin2x+2cosx+1] / [2+2cos^2(x)+cos(x)]
=[2cosx(cos²x+1)+1-sin2x] / [2+2cos^2(x)+cos(x)]
∴f(π/3)=[2cosx(cos²x+1)+1-sin2x] / [2+2cos^2(x)+cos(x)]
=[1/4+1-√3/2]/[2+1/4+1/2]
=(5-2√3)/11
=[2cos^3x-sin2x+2cosx+1] / [2+2cos^2(x)+cos(x)]
=[2cosx(cos²x+1)+1-sin2x] / [2+2cos^2(x)+cos(x)]
∴f(π/3)=[2cosx(cos²x+1)+1-sin2x] / [2+2cos^2(x)+cos(x)]
=[1/4+1-√3/2]/[2+1/4+1/2]
=(5-2√3)/11
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询