判断瑕积分的敛散性 ∫1/(3次根号下(x^2*(1-x))) dx 积分上限是1 下限是0

判断瑕积分的敛散性∫1/(3次根号下(x^2*(1-x)))dx积分上限是1下限是0... 判断瑕积分的敛散性 ∫1/(3次根号下(x^2*(1-x))) dx 积分上限是1 下限是0 展开
 我来答
扬傲解佁
2020-04-01 · TA获得超过3712个赞
知道大有可为答主
回答量:3121
采纳率:29%
帮助的人:225万
展开全部
∵x=0与x=1是原积分的两个瑕点
∴把它分成两个积分判断,即
原积分=∫(0,1)dx/(x²(1-x))^(1/3) (∫(0,1)表示从0到1积分,以下类同)
=∫(0,1/2)dx/(x²(1-x))^(1/3)+∫(1/2,1)dx/(x²(1-x))^(1/3)
设f(x)=1/(x²(1-x))^(1/3)
∵lim(x->0+)(x^(2/3)*f(x))=lim(x->0+)(1/(1-x)^(1/3))=1
∴积分∫(0,1/2)dx/(x²(1-x))^(1/3)收敛
∵lim(x->1-)((1-x)^(1/3)*f(x))=lim(x->1-)(1/x^(2/3))=1
∴积分∫(1/2,1)dx/(x²(1-x))^(1/3)收敛
故原积分收敛.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式