平面上不共线的四点,可以确定圆的个数为( )

平面上不共线的四点,可以确定圆的个数为()A.1个或3个B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个... 平面上不共线的四点,可以确定圆的个数为( ) A.1个或3个B.3个或4个 C.1个或3个或4个D.1个或2个或3个或4个 展开
 我来答
弘枝孝星津
2020-01-31 · TA获得超过3506个赞
知道大有可为答主
回答量:3098
采纳率:24%
帮助的人:211万
展开全部
【答案】C
【答案解析】试题分析:不在同一条直线上的三个点确定一个圆.由于点的位置不同,导致确定的圆的个数不同,所以本题分三种不同情况考虑.
(1)当四个点中有三个点在同一直线上,另外一个点不在这条直线上时,确定3个圆;
(2)当四个点中任意三个点都不在同一条直线上,并且四点不共圆时,则任意三点都能确定一个圆,一共确定4个圆;
(3)当四个点共圆时,只能确定一个圆.
故选C.
考点:确定圆的条件
点评:分类讨论问题是初中数学的重点也是难点,在中考压轴题中极为常见,一般难度较大,需特别注意.
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式