设3/2<a<1,函数f(x)=x三次方-3/2ax方+b(-1小于等于x小于等于1)的最大值为1最小值为-根号6/2,求a.b
2个回答
展开全部
f'(x)=3x^2-3ax=3x(x-a)
令f’(x)=0,得x=0,a
f(x)在[-1,0]递增,在(0,a]递减,在(a,1)递增
所以f(x)在x=0取极大值,在x=a处取极小值
f(0)=b
f(a)=-(1/2)a^3+b
f(1)=1-(3/2)a+b<f(0)
f(-1)=-1-(3/2)a+b<f(a)
所以
最大值b=1
最小值f(-1)=-1-(3/2)a+b=-√6/2,得a=√6/3
所以
a=√6/3
b=1
不知道算错没,方法是这样的
令f’(x)=0,得x=0,a
f(x)在[-1,0]递增,在(0,a]递减,在(a,1)递增
所以f(x)在x=0取极大值,在x=a处取极小值
f(0)=b
f(a)=-(1/2)a^3+b
f(1)=1-(3/2)a+b<f(0)
f(-1)=-1-(3/2)a+b<f(a)
所以
最大值b=1
最小值f(-1)=-1-(3/2)a+b=-√6/2,得a=√6/3
所以
a=√6/3
b=1
不知道算错没,方法是这样的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询