已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是等比数列,并求{an}的通项公式

笑年1977
2013-02-21 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
a(n+2)+2an=3a(n+1)
a(n+2)-a(n+1)=2a(n+1)-2an
[a(n+2)-a(n+1)]/[a(n+1)-2an]=2
∴数列{an+1-an}是等比数列
a(n+1)-an=(a2-a1)q^(n-1)
=(4-(-1))2^(n-1)
=5*2^(n-1)
an-a(n-1)=5*2^(n-2)
.........................
a2-a1=(4-(-1))=5=5*2^0
相加得
a(n+1)-a1=5(2^0+2^1+........2^(n-1))
=5*(1*(2^n-1)/(2-1))
=5*2^n-5
a(n+1)=5*2^n-5+a1=5*2^n-6
an=5*2^(n-1)-6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式