一个命题的否定形式和否命题有什么区别?

 我来答
祖嘉禧褒映
2020-03-27 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:557万
展开全部
一个命题与它的否定形式是完全对立的。两者之间有且只有一个成立。
数学中常用到反证法,要证明一个命题,只需要证明它的否定形式不成立就可以了。
怎样得到一个命题的否定形式?如果你学了数理逻辑就好理解了,现在只能这样理解:
原命题:所有自然数的平方都是正数
原命题的标准形式:任意x,(若x是自然数,则x²是正数)
“任意”是限定词,“x是自然数”是条件,“x²是正数”是结论。否定一个命题,需要同时否定它的限定词和结论。限定词“任意”和“存在”互为否定。
否定形式:不是(任意x,(若x是自然数,则x²是正数))=存在x,(若x是自然数,则x²不是正数)
换一个说法就是:至少有一个自然数的平方不是正数
而一个命题的否命题用得较少。命题是否成立,与它的否命题是否成立,两者没有关系。
得到一个问题的否命题很容易,把限定词,条件,结论全部否定就可以了。
原命题:所有自然数的平方都是正数
原命题的标准形式:任意x,(若x是自然数,则x²是正数)
否命题:存在x,(若x不是自然数,则x²不是正数)
换一个说法就是:存在某个非自然数,其平方不是正数
(你们老师的叙述是双重否定,听起来不是很舒服)
此外,对于逆命题,是否定限定词,然后交换条件和结论
题目中的命题的逆命题就是:存在x,(若x²是正数,则x是自然数)
逆否命题,就是逆命题的否命题,或者否命题的逆命题,就是限定词不变,否定条件和结论并交换。
题目中的命题的逆否命题就是:任意x,(若x²不是正数,则x不是自然数)
艾复竹嫚
游戏玩家

2019-11-15 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:647万
展开全部
一个命题与它的否定形式是完全对立的。两者之间有且只有一个成立。
数学中常用到反证法,要证明一个命题,只需要证明它的否定形式不成立就可以了。
怎样得到一个命题的否定形式?如果你学了数理逻辑就好理解了,现在只能这样理
原命题:所有自然数的平方都是正数
原命题的标准形式:任意x,(若x是自然数,则x²是正数)
“任意”是限定词,“x是自然数”是条件,“x²是正数”是结论。否定一个命题,需要同时否定它的限定词和结论。限定词“任意”和“存在”互为否定。
否定形式:不是(任意x,(若x是自然数,则x²是正数))=存在x,(若x是自然数,则x²不是正数)
换一个说法就是:至少有一个自然数的平方不是正数
而一个命题的否命题用得较少。命题是否成立,与它的否命题是否成立,两者没有关系。
得到一个问题的否命题很容易,把限定词,条件,结论全部否定就可以了。
原命题:所有自然数的平方都是正数
原命题的标准形式:任意x,(若x是自然数,则x²是正数)
否命题:存在x,(若x不是自然数,则x²不是正数)
换一个说法就是:存在某个非自然数,其平方不是正数
(你们老师的叙述是双重否定,听起来不是很舒服)
此外,对于逆命题,是否定限定词,然后交换条件和结论
题目中的命题的逆命题就是:存在x,(若x²是正数,则x是自然数)
逆否命题,就是逆命题的否命题,或者否命题的逆命题,就是限定词不变,否定条件和结论并交换。
题目中的命题的逆否命题就是:任意x,(若x²不是正数,则x不是自然数)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式