
计算二重积分
3个回答
展开全部
[-x*cos(x+y)]' = x*sin(x+y) - cos(x+y)
x*sin(x+y) = cos(x+y) - [x*cos(x+y)]'
以上是对 x 求导 的结果。把y暂看作常数。
二重积分,可以先把y看作常数,对x进行积分。然后再对y积分。
∫∫xysin(x+y) dxdy
= ∫y [∫xsin(x+y) dx] dy
= ∫y {∫cos(x+y) - [x*cos(x+y)]' dx } dy
= ∫y [∫cos(x+y) dx] dy - ∫y ∫[x*cos(x+y)]' dx dy
= ∫y sin(x+y) dy - ∫xycos(x+y) dy
对于其中第一项,仍然采用分部积分法
∫y sin(x+y) dy
= ∫ {cos(x+y) - [y*cos(x+y)]' } dy
= sin(x+y) - y*cos(x+y)
对于第二项
∫xycos(x+y) dy
= x∫ycos(x+y) dy
= x ∫ {[ysin(x+y)]' - sin(x+y) } dy
= xysin(x+y) + xcos(x+y)
因此 原二重积分结果为
sin(x+y) - y*cos(x+y) - xysin(x+y) - xcos(x+y)
= (1 -xy)sin(x+y) - (x+y) cos(x+y)
(经对x和y求导检验后,上述结果正确)
以下限代入
= (1 - 0)*sin0 - (0+0)cos0
= 0
以上限 x+y=π/2 代入
= 1 - xy
= 1 - x(π/2 - x)
= 1 - πx/2 + x^2
其中 x ∈[0,π/2]
上限 为 x+y = π/2。但 x 和y 本身并非定值。这导致了积分结果依然是一个函数。
x*sin(x+y) = cos(x+y) - [x*cos(x+y)]'
以上是对 x 求导 的结果。把y暂看作常数。
二重积分,可以先把y看作常数,对x进行积分。然后再对y积分。
∫∫xysin(x+y) dxdy
= ∫y [∫xsin(x+y) dx] dy
= ∫y {∫cos(x+y) - [x*cos(x+y)]' dx } dy
= ∫y [∫cos(x+y) dx] dy - ∫y ∫[x*cos(x+y)]' dx dy
= ∫y sin(x+y) dy - ∫xycos(x+y) dy
对于其中第一项,仍然采用分部积分法
∫y sin(x+y) dy
= ∫ {cos(x+y) - [y*cos(x+y)]' } dy
= sin(x+y) - y*cos(x+y)
对于第二项
∫xycos(x+y) dy
= x∫ycos(x+y) dy
= x ∫ {[ysin(x+y)]' - sin(x+y) } dy
= xysin(x+y) + xcos(x+y)
因此 原二重积分结果为
sin(x+y) - y*cos(x+y) - xysin(x+y) - xcos(x+y)
= (1 -xy)sin(x+y) - (x+y) cos(x+y)
(经对x和y求导检验后,上述结果正确)
以下限代入
= (1 - 0)*sin0 - (0+0)cos0
= 0
以上限 x+y=π/2 代入
= 1 - xy
= 1 - x(π/2 - x)
= 1 - πx/2 + x^2
其中 x ∈[0,π/2]
上限 为 x+y = π/2。但 x 和y 本身并非定值。这导致了积分结果依然是一个函数。

2025-04-21 广告
基本释义,integrating sphere。具有高反射性内表面的空心球体。用来对处于球内或放在球外并靠近某个窗口处的试样对光的散射或发射进行收集的一种高效能器件。球上的小窗口可以让光进入并与检测器靠得较近。积分球又称为光通球,是一个中空...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |