已知函数f(x)=cosx
证明(1)1/2[f²(π/4-x)+f²(π/4+x)]≥√f²(π/4-x)*f²(π/4+x)(2)4f(π/3-x)*f(...
证明(1)1/2[f²(π/4-x)+f²(π/4+x)]≥√f²(π/4-x)*f²(π/4+x)
(2)4f(π/3-x)*f(x)*f(π/3+x)=f(3x) 展开
(2)4f(π/3-x)*f(x)*f(π/3+x)=f(3x) 展开
1个回答
展开全部
1、1/2[f²(π/4-x)+f²(π/4+x)]
=[cos²(π/4-x)+cos²(π/4+x)]/2
=[((cos(π/2-2x)+1)/2+((cos(π/2+2x)+1)/2]/2
=[sin2x+1+(-sin2x+1)]/4
=2/4=1/2
f²(π/4-x)*f²(π/4+x)=cos²(π/4-x)*cos²(π/4+x)
=((cos(π/2-2x)+1)/2*((cos(π/2+2x)+1)/2=(1+sin2x)(1-sin2x)/4
=(1-sin²2x)/4=cos²2x/4<=1/4
所以 1/2[f²(π/4-x)+f²(π/4+x)]≥√f²(π/4-x)*f²(π/4+x)
2、4f(π/3-x)*f(x)*f(π/3+x)
=4cos(π/3-x)cosxcos(π/3+x)
=4cosx(cos2x+cos2π/3)/2
=2cosxcos2x+2cos2π/3cosx
=(cos3x+cosx)+2*(-1/2)cosx
=cos3x
=f(3x)
证毕
=[cos²(π/4-x)+cos²(π/4+x)]/2
=[((cos(π/2-2x)+1)/2+((cos(π/2+2x)+1)/2]/2
=[sin2x+1+(-sin2x+1)]/4
=2/4=1/2
f²(π/4-x)*f²(π/4+x)=cos²(π/4-x)*cos²(π/4+x)
=((cos(π/2-2x)+1)/2*((cos(π/2+2x)+1)/2=(1+sin2x)(1-sin2x)/4
=(1-sin²2x)/4=cos²2x/4<=1/4
所以 1/2[f²(π/4-x)+f²(π/4+x)]≥√f²(π/4-x)*f²(π/4+x)
2、4f(π/3-x)*f(x)*f(π/3+x)
=4cos(π/3-x)cosxcos(π/3+x)
=4cosx(cos2x+cos2π/3)/2
=2cosxcos2x+2cos2π/3cosx
=(cos3x+cosx)+2*(-1/2)cosx
=cos3x
=f(3x)
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |