已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关...
已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1y1-x2y2=2008...
已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1y1-x2y2=2008.求b的最小值.
展开
1个回答
展开全部
解:关于x的方程x2-2ax+b=0的根为a±a2-b,关于y的方程y2+2ay+b=0的根为-a±a2-b.
设a2-b=t,则
当x1=a+t,x2=a-t;y1=-a+t,y2=-a-t时,有x1y1-x2y2=0,不满足条件;
当x1=a-t,x2=a+t;y1=-a-t,y2=-a+t时,有x1y1-x2y2=0,不满足条件;
当x1=a-t,x2=a+t;y1=-a+t,y2=-a-t时,得x1y1-x2y2=4at;
当x1=a+t,x2=a-t;y1=-a-t,y2=-a+t时,得x1y1-x2y2=-4at.
由于t=a2-b>0,于是有at=502.
(10分)
又由于a为正整数,得知t是有理数,从而t是整数.
由at=502,得a=251,t=2,即b取最小值为b=a2-t2=2512-22=62997.
所以b的最小值为62997.
(15分)
设a2-b=t,则
当x1=a+t,x2=a-t;y1=-a+t,y2=-a-t时,有x1y1-x2y2=0,不满足条件;
当x1=a-t,x2=a+t;y1=-a-t,y2=-a+t时,有x1y1-x2y2=0,不满足条件;
当x1=a-t,x2=a+t;y1=-a+t,y2=-a-t时,得x1y1-x2y2=4at;
当x1=a+t,x2=a-t;y1=-a-t,y2=-a+t时,得x1y1-x2y2=-4at.
由于t=a2-b>0,于是有at=502.
(10分)
又由于a为正整数,得知t是有理数,从而t是整数.
由at=502,得a=251,t=2,即b取最小值为b=a2-t2=2512-22=62997.
所以b的最小值为62997.
(15分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询