为什么求线段最大值 要连接中点??如题的第三问 5
如图,在平面直角坐标系中,△ABC满足∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A从原点开始在x轴正半轴上运动时,点C也随之在y轴的正半轴上运...
如图,在平面直角坐标系中,△ABC满足∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A从原点开始在x轴正半轴上运动时,点C也随之在y轴的正半轴上运动
(1)当点A在坐标原点时,求原点O到点B的距离OB
(2)当OA=OC时,求原点O到点B的距离OB
(3)求原点O到点B的距离OB的最大值,并确定此时图形应满足什么条件
答案:(1)C(0,2),B(1,2),OB=根号5
(2)OA=OC=2/根号2=根号2,A(根号2,0)C(0,根号2)因为BC=1,AB=根号5,根据两点间距离公式列方程组,B(二分之根号二,二分之三根号二),OB=根号5
(3)取AC的中点E,连接OE,BE.
在Rt△AOC中,OE是斜边AC上的中线,
所以OE=1/2AC=1,
在△ACB中,BC=1,CE=1/2AC=1,
所以BE= 根号2;
若点O,E,B不在一条直线上,则OB<OE+BE=1+ 根号2 .
若点O,E,B在一条直线上,则OB=OE+BE=1+ 根号2 ,
所以当O,E,B三点在一条直线上时,OB取得最大值,最大值为1+ 根号2 展开
(1)当点A在坐标原点时,求原点O到点B的距离OB
(2)当OA=OC时,求原点O到点B的距离OB
(3)求原点O到点B的距离OB的最大值,并确定此时图形应满足什么条件
答案:(1)C(0,2),B(1,2),OB=根号5
(2)OA=OC=2/根号2=根号2,A(根号2,0)C(0,根号2)因为BC=1,AB=根号5,根据两点间距离公式列方程组,B(二分之根号二,二分之三根号二),OB=根号5
(3)取AC的中点E,连接OE,BE.
在Rt△AOC中,OE是斜边AC上的中线,
所以OE=1/2AC=1,
在△ACB中,BC=1,CE=1/2AC=1,
所以BE= 根号2;
若点O,E,B不在一条直线上,则OB<OE+BE=1+ 根号2 .
若点O,E,B在一条直线上,则OB=OE+BE=1+ 根号2 ,
所以当O,E,B三点在一条直线上时,OB取得最大值,最大值为1+ 根号2 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询