设f(x)是定义在R 上的奇函数,且当x>0时,f(x)=2^x.若对任意的x属于[t,t+1],不等式f(x+t)>=f^3(x)恒成立,
设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2^x.若对任意的x属于[t,t+1],不等式f(x+t)>=f^3(x)恒成立,则实数t的取值范围是?答案:(-...
设f(x)是定义在R 上的奇函数,且当x>0时,f(x)=2^x.若对任意的x属于[t,t+1],不等式f(x+t)>=f^3(x)恒成立,则实数t的取值范围是?答案:(-无穷,-2]求过程。
展开
1个回答
展开全部
解:该题为基础的函数方程不等式问题。利用转换,代换,化归思想即可。
f(x+t)>=f^3(x) => 2^(x+t)>=(2^x)^3=2^(3x)
对于指数函数2^x在R上单调递增,所以上式可得: x+t>=3x => t>=2x
因为在[t,t+1]上恒成立,所以 2x的最大值是2(t+1)
要使不等式恒成立,则t必须大于等于2x的最大值,即t>=2(t+1)
=>t<=-2
综上所述:t的取值范围是(负无穷,-2]
如果您还不明白,可以随时和我联系,十分乐意为您效劳,祝您学习进步,谢谢!
f(x+t)>=f^3(x) => 2^(x+t)>=(2^x)^3=2^(3x)
对于指数函数2^x在R上单调递增,所以上式可得: x+t>=3x => t>=2x
因为在[t,t+1]上恒成立,所以 2x的最大值是2(t+1)
要使不等式恒成立,则t必须大于等于2x的最大值,即t>=2(t+1)
=>t<=-2
综上所述:t的取值范围是(负无穷,-2]
如果您还不明白,可以随时和我联系,十分乐意为您效劳,祝您学习进步,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询